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Abstract 

 

This study covers a State Dependent Ricatti Equation (SDRE) based Sliding Mode Controller (SMC) 

and classical PID controller that are applied for an active control of the suspension system of a 

quarter car model. At first, this suspension system is controlled by SDRE based sliding mode 

controller for a road disturbance input and then for the same input the same system is controlled by 

classical PID controller. Finally, the results are compared. 
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1. Introduction 

Conventional vehicle suspension systems are used for isolation of road-induced vibration. 

There are three common types of suspension systems. These are active, semiactive and passive 

suspensions. Passive suspension system means that it has springs, dampers or shock absorbers. 

On the other hand, the semi active suspension systems have controllable dampers as 

electrorheological (ER) and magnetorheological (MR). Both fluids are smart materials made 

mixing fine particles into a liquid with low viscosity. Active suspensions mean that at least 

some part of required suspension force is generated from active power sources such as 

compressors, hydraulic pumps, etc. In application of active suspensions, microprocessors, 

associated electronic devices and also actuators are used. Compared with passive suspensions, 

active suspensions can improve the performance of the suspension system over a wide range of 

frequency[1-3].  

The present work includes active control of an quarter car model subjected to random road 

disturbance input. For control of active power source, both SDRE based sliding mode and 

classical PID controllers are used. The main purpose of this study is to consume less energy by 

generating less force while the road-induced vibrations are isolating. 

The mathematical backround of controllers are given in Section 2 of the paper. In Section 3, 

mathematical model of car and suspension system are given. The simulation results are given 

in Section 4 and finally conclusions are in Section 5. 

 

2. Materails and Method 

 

2.1 Theory 

 

In this study, two types of control techniques are used. The first technique is SDRE based SMC 

and the second technique is classical PID controller. 
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The system to be controlled is describes as follows. 

𝑥̇(𝑡) = 𝐴(𝑥)𝑥(𝑡) + 𝐵𝑢(𝑡)     (2.1) 

Where 𝑥 ∈ 𝑅𝑛 and 𝑢 ∈ 𝑅𝑚 are state and control vectors. Since the system is considered to be 

frozen at each time intervals, the system is approached as a LTI system at that time intervals. 

Therefore, the system becomes as follows. 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)                                               (2.2) 

Then if the coordination transformation is used on that system as follows. 

𝑧(𝑡) = 𝑇𝑟𝑥(𝑡)                                                            (2.3) 

𝑇𝑟 = 𝑞(𝐵)                                                                  (2.4) 

Where 𝑞(𝐵) is Q-R decomposition matrix of matrix B. And then the system and control matrix 

in terms of that decomposition can be written as follows. 

𝐴𝑟𝑒𝑔 = 𝑇𝑟𝐴𝑇𝑟
𝑇                                                               (2.5) 

𝐵𝑟𝑒𝑔 = 𝑇𝑟𝐵                                                                    (2.6) 

For SDRE algorithm, a performance index must be determined. That cost funciton is given as  

𝐽 =
1

2
∫ 𝑥(𝑡)𝑇𝑄𝑥(𝑡)𝑑𝑡

∞

𝑡𝑠
                                               (2.7) 

where 𝑄 ∈ 𝑅𝑛𝑥𝑛, symmetric and positive definite matrix. In addition, 𝑡𝑠 is the time when the 

system begins to sliding motion. At that time 𝑥(𝑡) → 0. After that if the coordinate 

transformation above is applied on the matrix 𝑄. 

𝑄𝑟𝑒𝑔 = 𝑇𝑟𝑄𝑇𝑟
𝑇                                                             (2.8) 

Matrices in Equation (2.4), Equation (2.5) and Equation (2.8) are defined as in [4] 

𝐴𝑟𝑒𝑔 = [
𝐴11 𝐴12

𝐴21 𝐴22
]                                                        (2.9) 

𝐵𝑟𝑒𝑔 = [
0
𝐵2

]                                                                 (2.10) 

Where 𝐴11 ∈ 𝑅(𝑛−𝑛−1)𝑥(𝑛−𝑚−1), 𝐴12 ∈ 𝑅(𝑛−𝑚−1)𝑥(𝑚−1), 𝐴21 ∈ 𝑅(𝑚−1)𝑥(𝑛−𝑚−1), 

𝐴22 ∈ 𝑅(𝑚−1)𝑥(𝑚−1) and  𝐵2 ∈ 𝑅(𝑚−1)𝑥(𝑚−1).  

TrQTr
T= (

Q
11

Q
12

Q
21

Q
22

)                                                   (2.11) 

Then if the variables in Equation (2.3) and Equation (2.11) is introduced into Equation (2.7), 

the performance index is defined as 

J=
1

2
∫ z1

TQ
11

z1+2z1
TQ

12
z2+z2

TQ22z2 dt
∞

ts
                                  (2.12) 

But performance index in Equation (2.12) is not in standard LQR form. Because of this the 

variable 2z1
TQ

12
z2 in Equation (2.12) must be eliminated. For elimination the steps given below 

should be followed. 

2z1
TQ

12
z2+z2

TQ
22

z2=(z2+Q
22

-1
Q

21
z1)

T
. Q

22
(z2+Q

22

-1
Q

21
z1)-z1

TQ
21

T
Q

22

-1
Q

21
z1           (2.13) 

Then, if new variables are defined as follows. 

𝑄̃ = 𝑄11 − 𝑄12𝑄22
−1𝑄21                                                        (2.14) 

And 

𝑣 = 𝑧2 + 𝑄22
−1𝑄21𝑧1                                                             (2.15) 

The new cost funtion is obtained after the performance index in Equation (2.12) is redefined 

with the new variables in Equation (2.13), Equation (2.14) and Equation (2.15) as  

𝐽 =
1

2
∫ (𝑧1

𝑇𝑄̃𝑧1 + 𝑣𝑇𝑄22𝑣)𝑑𝑡
∞

𝑡𝑠
                                           (2.16) 

Therefore, performance index in Equation (2.16) have transformed into its regular form. Then 

if we rewrite coordinate transformation as 

ż1(t)=A11z1(t)+A12z2(t)                                                      (2.17) 

And if a new parameter is defined as below 

Â=A11-A12Q
22

-1
Q

21
                                                           (2.18) 
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Then if the parameters in Equation (2.15) and Equation (2.18) are inserted into Equation (2.17) 

the result is as folowing. 

ż1(t)=Âz1(t)+A12v(t)                                                         (2.19) 

If the performance index in equation (2.16) is solved by using state dependent Riccati equation 

the solution is obtained as 

P1Â+Â
T
P1-P1A12Q

22

-1
A12

T
P1+Q̆=0                                            (2.20) 

In equation (2.20) P1 is positive definite and solution of the Riccati equation. Then if an optimal 

𝑣 is defined as  

v=-Q
22

-1
A12

T
P1z1                                                               (2.21) 

Then if this optimal term is equalized with the term in equation (2.15) and after that if new 

equation is solved the result is given below. 

z2=-Q
22

-1
(A12

T
P1+Q

21
)z1                                                    (2.22) 

Finally from the equaiton (2.22), the sliding surface’s slope is obtained as follows. 

M=-Q
22

-1
(A12

T
P1+Q

21
)                                                       (2.23) 

In equation (2.23) 𝑀 ∈ 𝑅𝑛×𝑚. After finding the slope, the sliding surface is obtained as  

σ(z)=z2+Mz1                                                                       (2.24) 

To produce further, a control term which hold the system on designed sliding surface should 

be defined. For this reason, the condition below must be satisfied [4]. 

For σ(z)>0  σ̇(z)<0, for σ(z)<0  σ̇(z)>0                                              (2.25) 

Here, σ̇(z) is the first time derivative of the sliding surface. 

σ̇(z) = 𝑀𝐴𝑧                                                                 (2.26) 

The control term is divided into two parts as follows. 

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛𝑜𝑛                                                             (2.27) 

𝑢𝑒𝑞 = −(𝜎𝐵)−1𝜎̇                                                              (2.28) 

𝑢𝑛𝑜𝑛 = −𝑘(𝑡, 𝑧)(𝜎𝐵)−1𝑠𝑔𝑛(𝜎)                                                 (2.29) 

Here, 𝑘(𝑡, 𝑧) > 0. Before advancing to the next step, it is first pertinent to establish sufficient 

conditions which guarantee that an ideal sliding motion will take place. Intuitively, the sliding 

surface must be at least locally attractive. This may be expressed mathematically as 

lim
𝜎→0+

𝜎̇ < 0  and  lim
𝜎→0−

𝜎̇ > 0                                           (2.30) 

In some domain Ω⊂𝑅𝑛. In this case the sliding surface would be 
𝐷 = 𝜎 ∩ 𝛺 = {𝑥 ∈ 𝛺  ∶    𝜎(𝑥) = 0}                                        (2.31) 

The expression given in equation (2.30) is often replaced by the equivalent, but more succinct 

criterion [4] 

𝜎𝜎̇ < 0                                                                     (2.32) 

The expressions in equation (2.30) and (2.32) are termed reachability conditions. In general, if 

the reachability condition in equation (2.32) is satisfied globally then since 
1

2

𝑑

𝑑𝑡
𝜎2 = 𝜎𝜎̇                                                                (2.33) 

It follows that the function 

𝑉(𝜎) =
1

2
𝜎2                                                              (2.34) 

is a Lyapunov function for the state 𝜎. Unfortunately, although equations (2.30) and (2.32) are 

commonly encountered in the literature, they do not guarantee the existence of an ideal sliding 

motion [4]. Essentially these conditions only guarantee that the sliding surface is reached 

asymtotically. 

A stronger condition, guaranteeing an ideal sliding motion, is the η-reachability condition 

given by [4] 

𝜎̇𝜎 ≤ −𝜂|𝜎|                                                           (2.35) 

Here, η is a small positive constant. By rewriting equation (2.33) a 
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1

2

𝑑

𝑑𝑡
𝜎2 ≤ −𝜂|𝜎|                                                           (2.36) 

and integrating from 0 to 𝑡𝑠, it follows that  
|𝜎(𝑡𝑠)| − |𝜎(0)| ≤ −𝜂𝑡𝑠                                                  (2.37) 

and thus the time taken to reach 𝜎 = 0, represented by 𝑡𝑠, satisfies condition below[4,5]. 

𝑡𝑠 ≤
|𝜎(0)|

𝜂
                                                             (2.38) 

and for PID control 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
                              (2.39) 

where 𝐾𝑝, 𝐾𝑖, 𝐾𝑑  and 𝑒(𝑡) are proportional, integral, derivative gain constants and error function 

respectively[6].  

 

3. Dynamics of Car Model 

In this study, a simple quarter-car suspension model that consists of one-fourth of the body 

mass, suspension components and one wheel is shown in Figure 1. This model has been used 

extensively in the literature and captures many essential characteristics of a real suspension 

system. The equations of motion and figure are borrowed from [7]. 

𝑚𝑠𝑧̈𝑠 + 𝑐𝑠[𝑧̇𝑠(𝑡) − 𝑧̇𝑢(𝑡)] + 𝑘𝑠[𝑧𝑠(𝑡) − 𝑧𝑢(𝑡)] = −𝑢(𝑡)                                  (3.1) 

𝑚𝑢𝑧̈𝑢 + 𝑐𝑠[𝑧̇𝑢(𝑡) − 𝑧̇𝑠(𝑡)] + 𝑘𝑠[𝑧𝑢(𝑡) − 𝑧𝑠(𝑡)] + 𝑘𝑡[𝑧𝑢(𝑡) − 𝑧𝑟(𝑡)] = 𝑢(𝑡)           (3.2)  

 

 
 

Figure 1. Quarter-car model [7] 

 

where 𝑚𝑠 is the sprung mass, which represents the car chassis; 𝑚𝑢 is the unsprung mass, which 

represents the wheel assembly; 𝑐𝑠 and 𝑘𝑠 are damping and stiffness of the uncontrolled 

suspension system, respectively; 𝑘𝑡 serves to model the compressibility of the pneumatic tyre; 

𝑧𝑠 and 𝑧𝑢 are the displacements of the sprung and unsprung masses, respectively; 𝑧𝑟 is the road 

displacement input; 𝑢(𝑡)represents the external input force of the suspension system. 

For sliding mode control Equation (3.1) and (3.2) must be transform to form below, 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐵𝑤𝑤(𝑡)                                             (3.3) 

where                                                                         
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A= 

[
 
 
 
 

0       0                     1                −1
0

−𝑘𝑠
𝑚𝑠

⁄

𝑘𝑠
𝑚𝑢

⁄

 

                      0   0                    1

0                   
−𝑐𝑠

𝑚𝑠
⁄               

𝑐𝑠
𝑚𝑠

⁄

−𝑘𝑡
𝑚𝑠

⁄      
𝑐𝑠

𝑚𝑠
⁄                    

−𝑐𝑠
𝑚𝑠

⁄ ]
 
 
 
 

                               (3.4) 

 

𝐵 =  

[
 
 
 
 
0
0
−1

𝑚𝑠

1

𝑚𝑢]
 
 
 
 

                                                                          (3.5) 

 

𝐵𝑤 = [

0
−1
0
0

]                                                                          (3.6) 

After choosing the states as 

𝑥1(𝑡) = 𝑧𝑠(𝑡) − 𝑧𝑢(𝑡)                                                           (3.7) 

𝑥2(𝑡) = 𝑧𝑢(𝑡) − 𝑧𝑟(𝑡)                                                           (3.8) 

𝑥3(𝑡) = 𝑧̇𝑠(𝑡)                                                                         (3.9) 

𝑥4(𝑡) = 𝑧̇𝑢(𝑡)                                                                      (3.10) 

𝑥(𝑡) = [𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡) 𝑥4(𝑡)], 𝑤(𝑡) = 𝑧̇𝑟(𝑡)                                  (3.11) 

where 𝑥1(𝑡) represents suspension deflection, 𝑥2(𝑡) is the tyre deflection, 𝑥3(𝑡) is the sprung 

mass speed, 𝑥4(𝑡) is unsprung mass speed and 𝑤(𝑡) denotes the disturbance caused by road 

roughness. 

And for PID control, the analyzes must be done in s domain. Therefore, the transfer functions 

between inputs and outputs must be determined. In that analyze 𝑥𝑠 is used as output and 𝑢(𝑡) 

and 𝑑(𝑡) are used as input. So for defining the first transfer function between 𝑥𝑠 and 𝑑(𝑡) the 

laplace transform of Eq(3.1) and (3.2) must be taken as follows, 

0 = 𝑚𝑠𝑠
2𝑋𝑠 + 𝑘𝑠𝑋𝑠 − 𝑘𝑠𝑋𝑢 + 𝑐𝑠𝑠𝑋𝑠 − 𝑐𝑠𝑠𝑋𝑢                                (3.12) 

From Eq(8)  

𝑋𝑢 = 𝑋𝑠(
𝑚𝑠𝑠

2+𝑐𝑠𝑠+𝑘𝑠

𝑐𝑠𝑠+𝑘𝑠
)                                                         (3.13) 

 

Then if the laplace transform of Eq(3.2) is taken and rearrange with Eq(3.13), the first transfer 

function between 𝑥𝑐 and w wil be like that, 

𝑇𝑓1 =
𝑐𝑠𝑘𝑡𝑠+𝑘𝑠𝑘𝑡

∆
                                                                    (3.14) 

Where  

∆= 𝑚𝑠𝑚𝑢𝑠4 + 𝑠3(𝑚𝑠𝑐𝑠 + 𝑚𝑢𝑐𝑠) + 𝑠2(𝑚𝑠𝑘𝑡 + 𝑚𝑠𝑘1 + 𝑚𝑢𝑘1) + 𝑐𝑠𝑘𝑡𝑠 + 𝑘𝑠𝑘𝑡 (3.15) 

And if the same calculations is done the second transfer function between 𝑥𝑠 and 𝑢(𝑡) will be 

as follows, 

𝑇𝑓2 =
−𝑚𝑢𝑠2−𝑘𝑡

∆
                                                                    (3.16) 

 

4. Simulation Results  

 
In this section, firstly, SDRE based sliding mode controller applied to the quarter car model. 

The models parameters have following values [7]. 

 

 



O. Bicer et al./ ISITES2016 Alanya/Antalya - Turkey  1374 

 

 
Table 1. Parameters of quarter car model 

 

Parameters Values 

𝑚𝑠 504.5 kg 

𝑚𝑢 62 kg 

𝑘𝑠 13100 N/m 

𝑐𝑠 400 Ns/m 

𝑘𝑡 252000 N/m 

 

The random input of disturbance is shown in Figure 2; the responses of suspension deflection, 

tyre deflection, sprung mass acceleration and force input are shown in Figure 3-6 respectively. 

 

 
Figure 2. Disturbance Signal 

 

 
Figure 3. Deflection of Suspension 
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Figure 4. Deflection of tire 

 

 
Figure 5. Acceleration of car 

 

In Figure 2 the random input is choosen randomly. For applications deflection of tire and 

deflection of suspension must be small values. According to the Figure 3 and Figure 4, it can 

be seen that the values are small in comparison to [7]. In Figure 5 the result of vertical 

acceleration caused by random input is shown. This value should also be small. If this value is 

not small displacement of car value will also not be small and that means big oscillations in 

vertical direction. 
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Figure 6. Force Input 

 

In Figure 6 the desired input force input result is seen. This force realised by a force generator. 

The k value of SDRE based SMC is choosen 1.0 after some trials. In comparison to [7] this 

value is small and it means that the system is comsumed less energy.  

For now, PID control technique is applied. For PID control is chosen so control system scheme 

is as follows, 

 

 
Figure 7. PID Control scheme of model 
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Figure 8. Displacement of car body and Disturbance Input 

 

In Figure 8, the purple graph is road disturbance model and yellow line is the desired output for 

that disturbance and blue line is the displacement of car body. The PID constants are choosen 

0.1, 0.5 and 5 after some trials. 

 

5. Conclusion 

 
In our study, an active vibration control of suspension system for quarter car body with two 

different controller. The first one is SDRE based sliding mode controller. In that controller, the 

sliding surfaces are designed by SDRE method. Then, these slopes are used for designing of 

sliding surfaces. The same model is also controlled by [7]. They use use both active, passive 

and semi active vibration control. But mainly they use MR damper for suspension system with 

𝐻∞ control algorithm. In our study, the suspension system is give better results with consuming 

less energy. The k value in SDRE based SMC algorithm can be changed. If a better value for k 

is found the results will be better and more acceptable. 

Lastly, the same system is controlled by classical PID. As seen in Figure 8. the desired value 

is not tracked accurately but acceptable. 
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